4.8 Article

A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range

Journal

SCIENCE ADVANCES
Volume 7, Issue 52, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abl8313

Keywords

-

Funding

  1. National Natural Science Foundation of China [11872331, U20A6001]
  2. Zhejiang University K.P. Chao's High Technology Development Foundation

Ask authors/readers for more resources

This multifunctional e-skin, based on patterned metal films, utilizes piezoresistivity as a single sensing mechanism to achieve tactile sensing of pressure and temperature with a broad linear response range. The e-skin features serpentine metal traces and spatially distributed microprotrusions, exhibiting excellent flexibility and wearable conformability. The scalable manufacturing approach, compatible with established microfabrication processes, enables large-scale production of the e-skin for spatial tactile sensing in various application scenarios.
Electronic skins (e-skins) with multifunctional sensing functions have attracted a lot of attention due to their promising applications in intelligent robotics, human-machine interfaces, and wearable healthcare systems. Here, we report a multifunctional e-skin based on patterned metal films for tactile sensing of pressure and temperature with a broad linear response range by implementing the single sensing mechanism of piezoresistivity, which allows for the easy signal processing and simple device configuration. The sensing pixel features serpentine metal traces and spatially distributed microprotrusions. Experimental and numerical studies reveal the fundamental aspects of the multifunctional tactile sensing mechanism of the e-skin, which exhibits excellent flexibility and wearable conformability. The fabrication approach being compatible with the well-established microfabrication processes has enabled the scalable manufacturing of a large-scale e-skin for spatial tactile sensing in various application scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available