4.7 Article

Experimental and modeling analysis of p-type Bi0.4Sb1.6Te3 and graphene nanocomposites

Journal

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
Volume 16, Issue -, Pages 1702-1712

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2021.12.096

Keywords

Graphene; Bismuth telluride alloys; Thermoelectric conversion; Mechanical synthesis; Modeling

Funding

  1. Qatar National Research Fund (Qatar Foundation) [NPRP10-0206-170366, GSRA8-L-1-0414-21013]
  2. Qatar University
  3. Qatar National Library
  4. [GTRA-17722]

Ask authors/readers for more resources

This study investigates the effect of graphene nanosheets on the thermoelectric properties of Bi0.4Sb1.6Te3 alloy. The nanocomposites were synthesized using high-energy ball milling and SPS sintering techniques. The results show that the nanocomposites exhibit improved thermoelectric performance and output power.
The state-of-the-art Bismuth-Telluride (Bi2Te3) based systems are promising thermoelectric materials for efficient thermoelectric applications. In this study, the effect of graphene nanosheets (GNS) integrity on thermoelectric properties of a p-type Bi0.4Sb1.6Te3 alloy has been studied using high-energy ball milling and SPS sintering techniques. The synthesized pristine Bi0.4Sb1.6Te3 and 0.05wt% GNS/Bi0.4Sb1.6Te3 nanocomposites at different addition times of GNS have exhibited a single-phase and artifact-free bulk nanocrystalline Bi0.4Sb1.6Te3 with nanocrystals size of 17 nm. The TEM analysis confirmed the mechanical exfoliation of graphene filler in 5m nanocomposite into a single-layered nanostructure with an interplanar spacing of 0.343 nm. The prominent Raman features of the mono layered graphene sheet have appeared in the synthesized 5m-GNS/Bi0.4Sb1.6Te3 nanocomposite. This highlighted the crucial rule of graphene addition time on its structure and morphology of the synthesized nanocomposites. The ZT profile of 5m nanocomposite reached 0.801 at 348 K till 398 K. This resulted in 65% of improvements to the pristine Bi0.4Sb1.6Te3 pellet at 323 K. The obtained results were used to simulate a thermoelectric (TE) device module using ANSYS Workbench. The GNS nanocomposites have shown an ultrahigh output power of 95.57 W compared to 89.96 W for the pristine module at DT of 150 degrees C. The GNS addition has increased the output power of pristine Bi0.4Sb1.6Te3 by 7%, leading to comparable TE performance to other simulated Bi2Te3 systems. (C) 2021 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available