4.6 Article

Reconciling the Carbon Balance of Northern Sweden Through Integration of Observations and Modelling

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 126, Issue 23, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021JD035185

Keywords

boreal biome; net ecosystem exchange; tall tower eddy covariance; vegetation model; atmospheric transport model; FLEXPART

Funding

  1. Kempe Foundations [JCK-1815]
  2. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [942-2015-49]
  3. ModElling the Regional and Global earth system (MERGE)
  4. e-science collaboration (eSSENCE)
  5. Biodiversity and Ecosystems in a Changing Climate (BECC)
  6. Swedish Research Council [2018-05973]

Ask authors/readers for more resources

The study aimed to quantify the carbon balance in Northern Sweden region by integrating land-atmosphere fluxes and atmospheric carbon dioxide concentrations. By comparing estimated concentrations with ICOS observations, it evaluated the models' regional scale performance and indicated that both simulations and observations showed a reduction in the net CO2 uptake during drought.
The boreal biome plays an important role in the global carbon cycle. However, current estimates of its sink-source strength and responses to changes in climate are primarily derived from models and thus remain uncertain. A major challenge is the validation of these models at a regional scale since empirical flux estimates are typically confined to ecosystem or continental scales. The Integrated Carbon Observation System (ICOS)-Svartberget atmospheric station (SVB) provides observations including tall tower eddy covariance (EC) and atmospheric concentration measurements that can contribute to such validation in Northern Sweden. Thus, the overall aim of this study was to quantify the carbon balance in Northern Sweden region by integrating land-atmosphere fluxes and atmospheric carbon dioxide (CO2) concentrations. There were three specific objectives. First, to compare flux estimates from four models (VPRM, LPJ-GUESS, ORCHIDEE, and SiBCASA) to tall tower EC measurements at SVB during the years 2016-2018. Second to assess the fluxes' impact on atmospheric CO2 concentrations using a regional transport model. Third, to assess the impact of the drought in 2018. The comparison of estimated concentrations with ICOS observations helped the evaluation of the models' regional scale performance. Both the simulations and observations indicate there were similar reductions in the net CO2 uptake during drought. All the models (except for SiBCASA) and observations indicated the region was a net carbon sink during the 3-year study period. Our study highlights a need to improve vegetation models through comparisons with empirical data and demonstrate the ICOS network's potential utility for constraining CO2 fluxes in the region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available