4.7 Article

Gold Nanoparticles-Loaded Polyvinylpyrrolidone/Ethylcellulose Coaxial Electrospun Nanofibers with Enhanced Osteogenic Capability for Bone Tissue Regeneration

Journal

MATERIALS & DESIGN
Volume 212, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.110240

Keywords

Gold nanoparticles; Coaxial electrospinning; Osteogenic bioactivity; Osteogenic differentiation; Bone tissue regeneration

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20180772, BK20190133]
  2. National Natural Science Foundation of China [81802135]
  3. International Cooperation and Exchange of National Natural Science Foundation [NSFC 81420108021]
  4. Key Program of NSFC [81730067]

Ask authors/readers for more resources

The study demonstrated that electrospun scaffolds incorporating gold nanoparticles have great potential in improving osteogenic bioactivities and bone regeneration, suggesting promising applications in the field of bone tissue engineering.
Biomaterial-based scaffolds fabricated by electrospinning technique are promising platforms for bone tissue engineering. However, the current scaffolds have some limitations in terms of poor osteogenic bioactivities. In this study, citrate-stabilized gold-nanoparticles (GNPs) were encapsulated into polyvinylpyrrolidone/ethylcellulose scaffolds fabricated by coaxial electrospinning technique. Three types of GNPs-loaded electrospun scaffolds (P/E-0.5, P/E-1, and P/E-1.5) were prepared by changing the feeding GNPs. The morphological and physicochemical properties of these GNPs-incorporated electrospun scaffolds were comprehensively characterized. The results demonstrated that GNPs were successfully encapsulated into electrospun scaffolds, and their addition barely affected the morphology but improved the porosity and mechanical properties. In vitro studies revealed that GNPs-incorporated electrospun scaffolds showed excellent biocompatibility and osteogenic bioactivities, wherein the alkaline phosphatase activity, mineralized nodule formation, and the osteogenic-related genes expression were enhanced in GNPs-incorporated electrospun scaffolds compared to the neat P/E electrospun nano fibers. Then, the GNPs-incorporated electrospun scaffolds were surgically implanted into the defect area of the rat skull bone to test their in vivo bone repairing effect. It was observed that GNPs-incorporated scaffolds rapidly accelerated bone regeneration in vivo. Taken together, GNPs-incorporated coaxial electrospun nanofibers might be considered as promising scaffolds in the field of bone tissue regeneration. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available