4.8 Article

A Stochastic Geometry Analysis for Energy-Harvesting-Based Device-to-Device Communication

Journal

IEEE INTERNET OF THINGS JOURNAL
Volume 9, Issue 2, Pages 1591-1607

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JIOT.2021.3091723

Keywords

Device-to-device communication; Energy harvesting; Geometry; Stochastic processes; Cellular networks; Wireless communication; Internet of Things; Device to device (D2D); energy harvesting (EH); Internet of Things (IoT); stochastic geometry

Funding

  1. National Key R&D Program of China [2018YFB1800800]
  2. Key Area R&D Program of Guangdong Province [2018B030338001]
  3. Shenzhen Outstanding Talents Training Fund
  4. Guangdong Research Project [2017ZT07X152]

Ask authors/readers for more resources

This article investigates device-to-device transmission powered by radio signals harvested from cellular systems, proposes two transmission policies, and discusses the technical challenges to implement these policies. Numerical simulation results show that introducing a guard zone can significantly improve D2D performance.
The rapidly developing energy harvesting (EH) technology is a promising solution to the durability issue in the battery-powered Internet of Things (IoT) systems. In this article, underlaid device-to-device (D2D) transmission powered by radio signals harvested from cellular systems is studied. By considering the dilemmas among EH, D2D transmission opportunity, and interference management, we propose two transmission policies: 1) Policy 1 requires that the available power in the battery should be no less than the D2D transmission power and 2) Policy 2 not only sets the constraint on available power but also introduces the guard zone rule to protect D2D transmissions from severe interference. The employment of a guard zone in this situation is technically challenging since the original distribution of energy arrival will thereby be changed. We derive expressions in closed or semiclosed forms for the considered D2D transmission performance metrics with the stochastic geometry framework and Poisson hole process. With numerical simulation results, the influences of varying network parameters on D2D performances are illustrated. The results show that by introducing a guard zone, the D2D successful transmission rate can be increased by 41.2%. All the developed D2D frameworks and the summarized useful remarks are used to provide meaningful design insights and guidelines for the deployment strategies of EH-based D2D wireless networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available