4.7 Article

An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands

Journal

RESULTS IN PHYSICS
Volume 30, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.rinp.2021.104811

Keywords

Microwave absorber; Ultra-broadband; Stereo metamaterial; Metasurface

Funding

  1. Fundamental Research Funds for the Central Universities
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave

Ask authors/readers for more resources

This paper introduces a metamaterial absorber based on a hybrid structure of stereo and planar resistive metamaterial elements, which can achieve broadband absorption from S to Ku band (2.59-16.80 GHz).
Broadband electromagnetic (EM) wave absorbers are persistently desired in the past decades due to their extensive applications in different fields. In this paper, we proposed and demonstrated a metamaterial absorber (MA) based on a hybrid structure of stereo and planar resistive metamaterial elements. In principle, this hybrid MA is a combination of the Dallenbach layer absorber and circuit analog (CA) absorber. By adjusting its dispersion feature, the stereo metamaterial based on standing resistive patch can work as a broadband artificial Dallenbach layer absorber for C, X and Ku bands. Such stereo metamaterial was also utilized as a dispersive dielectric spacer and a metasurface consisting of resistive circle rings was deployed on the top of it to implement an improved CA absorber for S and C bands. By combing them together, the proposed hybrid MA can achieve absorption over 90% in an ultra-broad bandwidth from S to Ku band (2.59-16.80 GHz). Since our design takes full advantage of the physical space, the hybrid MA achieves an actual thickness as only 1.075 times of the ultimate thickness corresponding to its absorption performance. Furthermore, the hybrid MA has comprehensive advantages in terms of stability against oblique incidence, easy processing and light-weight. The MA prototype was fabricated assisted by the silk screen printing process and its ultra-broadband absorption performance was experimentally validated by the measured results. The new concept of hybrid MA and specific design scheme proposed here provide a promising approach for broadband, low-profile and light weight EM absorber.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available