4.7 Article

Stimulation of motilin secretion by bile, free fatty acids, and acidification in human duodenal organoids

Journal

MOLECULAR METABOLISM
Volume 54, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.molmet.2021.101356

Keywords

Motilin; Secretion; Human intestinal organoids; Enteroendocrine hormones

Funding

  1. Wellcome Trust [100574/Z/12/Z, 106262/Z/14/Z, 106263/Z/14/Z]
  2. MRC [MRC_MC_UU_12012/3, MRC_MC_UU_12012/5]

Ask authors/readers for more resources

This study provides a comprehensive understanding of the regulation of motilin secretion in human duodenal M-cells, identifying key receptors involved in this process.
Objective: Motilin is a proximal small intestinal hormone with roles in gastrointestinal motility, gallbladder emptying, and hunger initiation. In vivo motilin release is stimulated by fats, bile, and duodenal acidification but the underlying molecular mechanisms of motilin secretion remain poorly understood. This study aimed to establish the key signaling pathways involved in the regulation of secretion from human motilin-expressing Mcells. Methods: Human duodenal organoids were CRISPR-Cas9 modified to express the fluorescent protein Venus or the Ca2 thorn sensor GCaMP7s under control of the endogenous motilin promoter. This enabled the identification and purification of M-cells for bulk RNA sequencing, peptidomics, calcium imaging, and electrophysiology. Motilin secretion from 2D organoid-derived cultures was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), in parallel with other gut hormones. Results: Human duodenal M-cells synthesize active forms of motilin and acyl-ghrelin in organoid culture, and also co-express cholecystokinin (CCK). Activation of the bile acid receptor GPBAR1 stimulated a 3.4-fold increase in motilin secretion and increased action potential firing. Agonists of the long-chain fatty acid receptor FFA1 and monoacylglycerol receptor GPR119 stimulated secretion by 2.4-fold and 1.5-fold, respectively. Acidification (pH 5.0) was a potent stimulus of M-cell calcium elevation and electrical activity, an effect attributable to acid-sensing ion channels, and a modest inducer of motilin release. Conclusions: This study presents the first in-depth transcriptomic and functional characterization of human duodenal motilin-expressing cells. We identify several receptors important for the postprandial and interdigestive regulation of motilin release. (c) 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available