4.6 Article

Influence of vacancy defects on the damage mechanics of graphene nanoribbons

Journal

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS
Volume 26, Issue 1, Pages 28-48

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1056789516645645

Keywords

Graphene nanoribbon; damage mechanics; molecular dynamics simulation; nanomaterials; Uniaxial tension

Funding

  1. US Navy Office of Naval Research Advanced Electrical Power Systems program

Ask authors/readers for more resources

Using molecular dynamics simulations, graphene nanoribbons with armchair chirality were subjected to displacement-controlled uniaxial tension until complete fracture at 300K in order to understand their damage mechanics. Graphene nanoribbons with and without a vacancy defect were simulated to compare the effect of the defect on the fracture behavior. Simulations were performed for graphene nanoribbons with lengths ranging from 2.5 to 15nm. The stress-strain curve of each case is reported, and the influence of defect on the material properties is discussed. For each sample, damage mechanics types were observed and discussed. Results show a negligible effect of the single vacancy defect on the ultimate strength of the graphene nanoribbon. However, having a single vacancy defect does influence the failure strain, as well as the damage mechanics past the ultimate stress point.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available