4.8 Article

Immunodominant and Neutralizing Linear B-Cell Epitopes Spanning the Spike and Membrane Proteins of Porcine Epidemic Diarrhea Virus

Journal

FRONTIERS IN IMMUNOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2021.785293

Keywords

porcine epidemic diarrhea virus; spike protein; membrane protein; neutralizing epitope; immunoinformatics; epitope prediction; immunodominant epitope

Categories

Funding

  1. B.F. Feed Company Limited - Development and Promotion of Science and Technology Talents Project (DPST)

Ask authors/readers for more resources

This study aims to investigate the immunological characteristics of porcine epidemic diarrhea virus (PEDV), particularly the linear B-cell epitopes on the S and M proteins of PEDV. Through immunoinformatics-based methods, nine novel immunodominant epitopes on the S protein and seven neutralizing epitopes on the M protein were identified. The findings provide valuable information for the development of a next-generation PEDV vaccine.
Porcine epidemic diarrhea virus (PEDV) is the causative agent of PED, an enteric disease that causes high mortality rates in piglets. PEDV is an alphacoronavirus that has high genetic diversity. Insights into neutralizing B-cell epitopes of all genetically diverse PEDV strains are of importance, particularly for designing a vaccine that can provide broad protection against PEDV. In this work, we aimed to explore the landscape of linear B-cell epitopes on the spike (S) and membrane (M) proteins of global PEDV strains. All amino acid sequences of the PEDV S and Mproteins were retrieved from the NCBI database and grouped. Immunoinformatics-based methods were next developed and used to identify putative linear B-cell epitopes from 14 and 5 consensus sequences generated from distinct groups of the S and M proteins, respectively. ELISA testing predicted peptides with PEDV-positive sera revealed nine novel immunodominant epitopes on the S protein. Importantly, seven of these novel immunodominant epitopes and other subdominant epitopes were demonstrated to be neutralizing epitopes by neutralization-inhibition assay. Our findings unveil important roles of the PEDV S2 subunit in both immune stimulation and virus neutralization. Additionally, our study shows the first time that the M protein is also the target of PEDV neutralization with seven neutralizing epitopes identified. Conservancy profiles of the epitopes are also provided. In this study, we offer immunoinformatics-based methods for linear B-cell epitope identification and a more complete profile of linear B-cell epitopes across the PEDV S and M proteins, which may contribute to the development of a greater next-generation PEDV vaccine as well as peptide-based immunoassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available