4.6 Article

Preparation and Properties of Directionally Solidified Ni-Al Based Alloys Modified by Molybdenum

Journal

CRYSTALS
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/cryst12020215

Keywords

Ni3Al based alloys; plasma melting; electron beam zone melting; hot compression tests

Ask authors/readers for more resources

Ni-Al-Mo based alloys with directionally solidified structure and unique properties are promising for high temperature applications. The compression test results demonstrate their high yield strength and maximal flow stress.
Ni-Al-Mo based alloys can be used as materials for high temperature applications. They can be prepared by various techniques such as an electron beam zone melting, which allows us to obtain the alloys with a directionally solidified structure and unique properties. A plasma-melted Ni-Mo master alloy was used for the preparation of the experimental alloys. Ni-Al-Mo alloys were melted in an induction furnace and then cast centrifugally in the form of bars. These bars were then re-melted in the electron beam zone furnace. The structure of these alloys was multi-phase. The structure was formed by the phases Ni-3(Al,Mo) and (Ni) with variable content of molybdenum. The structure also contained particles rich in molybdenum (Mo, MoNi). The alloys were submitted to the compression tests at a temperature of 800 degrees C. The yield strength of alloys achieved the value of approx. 800 MPa. The different molybdenum content affected the values of the maximal flow stress. The alloys with higher molybdenum content showed higher maximal flow stress, namely approx. 1300 MPa. The results show that these alloys are very promising for the production of structural components operating at elevated temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available