4.7 Article

Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury

Journal

BIOENGINEERED
Volume 13, Issue 6, Pages 14889-14902

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2021.1997564

Keywords

Isoginkgetin; ER stress; ischemia/reperfusion (I/R); autophagy

Ask authors/readers for more resources

Isoginkgetin effectively attenuates ischemia/reperfusion injury by blocking autophagy induced by endoplasmic reticulum stress. It also mitigates cerebral infarction, edema, neuronal apoptosis, and neurological impairment.
Isoginkgetin is characterized by properties of potent anticancer and anti-inflammation. To explore its effect on ischemic stroke, a rat model of ischemia/reperfusion (I/R) injury was established and induced by transient middle cerebral artery occlusion/reperfusion (MCAO/R). Different doses of isoginkgetin were intraperitoneally injected into each rat. Expressions of ER stress activation related makers including phosphorylated inositol-requiring enzyme 1 (IRE1), phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), activating transcription factor-6 (ATF6), and two autophagy markers (ratio of LC3II/I and Beclin-1) were detected by western blot. Infarct volume, neurological deficits, and brain water content were detected. The results showed that ER stress and autophagy were activated by cerebral (I/R) injury, which could be effectively attenuated following pre-ischemia isoginkgetin administration. Moreover, autophagy induced by ER stress was triggered by the activation of PERK and IRE1 pathways. ER stress inhibitor (4-PBA) and ER-related signaling inhibitors including PERK, GSK, IRE1, and DBSA markedly inhibited ER stress and autophagy induced by I/R. In addition, isoginkgetin markedly mitigated cerebral infarction, edema, neuronal apoptosis as well as neurological impairment induced by I/R injury, while tunicamycin (ER stress activator TM) and rapamycin (autophagy activator RAPA) could eliminate these lesions. This research identified a novel therapeutic agent isoginkgetin, which could effectively attenuate I/R injury by blocking autophagy induced by ER stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available