4.7 Article

Regulatory effects of miR-28 on osteogenic differentiation of human bone marrow mesenchymal stem cells

Journal

BIOENGINEERED
Volume 13, Issue 1, Pages 684-696

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2021.2012618

Keywords

Mir-28; human bone marrow mesenchymal stem cell; osteogenic differentiation

Funding

  1. Guangzhou Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Project [20202A011011]
  2. Guangzhou Municipal Health Commission Science and Technology Project Western Medicine General Guidance [20211A011021]

Ask authors/readers for more resources

This study aimed to investigate the regulatory effects of miR-28 on osteogenic differentiation of hBMMSCs. It was found that miR-28 could inhibit STAT1 expression, upregulate AKP and RUNX2 expression, and promote osteogenic differentiation.
We aimed to assess the regulatory effects of miR-28 on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs). HBMMSCs isolated, cultured and induced (at P3) to undergo osteogenic induction. The expressions of miRNAs were detected by gene microarray, and differentially expressed miRNAs in hBMMSCs compared with induced cells were obtained by significance analysis of microarrays. The microarray findings were confirmed by RT-PCR. TargetScan showed that signal transducer and activator of transcription 1 (STAT1) was the downstream target gene of miR-28. The relationship between miR-28 and STAT1 was validated using dual-luciferase reporter gene assay. HBMMSCs were transfected with miR-28 mimics and STAT1 siRNA, respectively. Samples were collected on day 10 after osteogenic differentiation, and the alkaline phosphatase (AKP) activity, Runt-related transcription factor 2 (RUNX2, a key regulator of osteogenic differentiation) and STAT1 expressions were determined using kits, PCR and Western blotting, respectively. Cell proliferation and migration were detected through CCK-8 and Transwell assays, respectively. During the osteogenic differentiation of hBMMSCs, the expression level of miR-28 increased. MiR-28 specifically bound the 3'-untranslated region (3'UTR) of STAT1 mRNA. It inhibited STAT1 expression in a targeted manner during osteogenic differentiation. Interference with STAT1 partially mimicked the regulatory effects of miR-28 overexpression on the osteogenic differentiation of hBMMSCs. Interference with STAT1 or overexpression of miR-28 did not affect proliferation or migration. MiR-28 has gradually increased expression during the osteogenic differentiation of hBMMSCs, which can directly bind STAT1 3'UTR and inhibit its expression, thereby up-regulating AKP and RUNX2, and promoting osteogenic differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available