4.7 Article

Regulation of microRNA miR-197-3p/CDC28 protein kinase regulatory subunit 1B (CKS1B) axis by Circular RNA hsa_circ_0000285 promotes glioma progression

Journal

BIOENGINEERED
Volume 13, Issue 3, Pages 4757-4772

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2022.2031673

Keywords

ceRNA; glioma; miRNA; circRNA

Funding

  1. Hubei Provincial Health Commission Project (2019-2020) 'Interleukin-33 Blocking Effect and Mechanism of Tumor Immune Escape' [WJ2019M099]

Ask authors/readers for more resources

The study reveals that the high expression of circular RNA circ_0000285 in gliomas promotes tumor growth and invasion by binding to miR-197-3p and silencing CKS1B. This highlights a novel competing endogenous RNA circuit in glioma progression.
Circular RNA circ_0000285 is differentially expressed in several malignancies; however, its role in gliomas is under investigation. Reverse transcription quantitative polymerase chain reaction was conducted to evaluate the expression of circ_0000285, miR-197-3p, and CDC28 protein kinase regulatory subunit 1B (CKS1B) in glioma tissues and cells. Cell Counting Kit-8 and Transwell invasion assays coupled with Western blotting analysis using anti-Bax and anti-Bcl-2 antibodies were performed to evaluate cell proliferation, invasion, and apoptosis. Luciferase reporter and AGO2 RNA immunoprecipitation assays were conducted to verify the interaction between miR-197-3p and circ_0000285 or CKS1B. Xenograft tumor growth was evaluated in mice. We noted that circ_0000285 was highly expressed in glioma tissues and cells and that circ_0000285-silencing retarded tumor growth both in vitro and in vivo. This effect was mediated by the binding of circ_0000285 to miR-197-3p, which silenced CKS1B, an essential driver of glioma cell proliferation and invasion. Thus, circ_0000285 boosted glioma progression by regulating the miR-197-3p/CKS1B axis, highlighting a novel competing endogenous RNA circuit of glioma progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available