4.6 Article

Gaussian Process Surrogates for Modeling Uncertainties in a Use Case of Forging Superalloys

Journal

APPLIED SCIENCES-BASEL
Volume 12, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/app12031089

Keywords

GP regression; FEM; surrogate modeling; multi-objective optimization; hot metal forming; Inconel 625

Funding

  1. Osterreichische Forschungsforderungsgesellschaft (FFG) [881039]
  2. Graz University of Technology

Ask authors/readers for more resources

The avoidance of scrap and adherence to tolerances are important goals in manufacturing. Researchers propose a simulation method using Gaussian Process surrogate model that considers real manufacturing process uncertainties, acting as a substitute for expensive and computationally intensive finite element method (FEM) simulation, resulting in a fast and robust method to adequately depict reality.
The avoidance of scrap and the adherence to tolerances is an important goal in manufacturing. This requires a good engineering understanding of the underlying process. To achieve this, real physical experiments can be conducted. However, they are expensive in time and resources, and can slow down production. A promising way to overcome these drawbacks is process exploration through simulation, where the finite element method (FEM) is a well-established and robust simulation method. While FEM simulation can provide high-resolution results, it requires extensive computing resources to do so. In addition, the simulation design often depends on unknown process properties. To circumvent these drawbacks, we present a Gaussian Process surrogate model approach that accounts for real physical manufacturing process uncertainties and acts as a substitute for expensive FEM simulation, resulting in a fast and robust method that adequately depicts reality. We demonstrate that active learning can be easily applied with our surrogate model to improve computational resources. On top of that, we present a novel optimization method that treats aleatoric and epistemic uncertainties separately, allowing for greater flexibility in solving inverse problems. We evaluate our model using a typical manufacturing use case, the preforming of an Inconel 625 superalloy billet on a forging press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available