4.7 Article

Effectiveness of antiviral metal and metal oxide thin-film coatings against human coronavirus 229E

Journal

APL MATERIALS
Volume 9, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0056138

Keywords

-

Funding

  1. NSERC Alliance COVID-19 [554383-20]
  2. NSERC I2I [557217-20]
  3. NSERC [RGPIN-2017-04212]

Ask authors/readers for more resources

Virucidal thin-film coatings have the potential to inactivate pathogens on surfaces, with Cu and Cu2O coatings demonstrating clear virucidal behavior against HCoV-229E human coronavirus. Despite being frequently cited antimicrobial materials, Ag, ZnO, and TiO2 coatings did not show a significant reduction in viral infectivity. Additionally, Cu fabric coating on N95 respirators' polypropylene fabrics effectively reduces the virus infectivity.
Virucidal thin-film coatings have the potential to inactivate pathogens on surfaces, preventing or slowing their spread. Six potential nanoscale antiviral coatings, Cu, Cu2O, Ag, ZnO, zinc tin oxide (ZTO), and TiO2, are deposited on glass, and their ability to inactivate the HCoV-229E human coronavirus is assessed using two methods. In one method, droplets containing HCoV-229E are deposited on thin-film coatings and then collected after various stages of desiccation. In the second method, the thin-film coatings are soaked in the virus supernatant for 24 h. The Cu and Cu2O coatings demonstrate clear virucidal behavior, and it is shown that controlled delamination and dissolution of the coating can enhance the virucidal effect. Cu is found to produce a faster and stronger virucidal effect than Cu2O in the droplet tests (3 log reduction in the viral titer after 1 h of exposure), which is attributed, in part, to the differences in film adhesion that result in delamination of the Cu film from the glass and accelerated dissolution in the droplet. Despite Ag, ZnO, and TiO2 being frequently cited antimicrobial materials, exposure to the Ag, ZnO, ZTO, and TiO2 coatings results in no discernible change to the infectivity of the coronavirus under the conditions tested. Thin-film Cu coatings are also applied to the polypropylene fabrics of N95 respirators, and droplet tests are performed. The Cu fabric coating reduces the infectivity of the virus; it results in a 1 order-of-magnitude reduction in the viral titer within 15 min with a 2 order-of-magnitude reduction after 1 h.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available