4.8 Article

Extracellular Adhesive Cues Physically Define Nucleolar Structure and Function

Journal

ADVANCED SCIENCE
Volume 9, Issue 10, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202105545

Keywords

biomechanics; keratinocyte; mechanotransduction; nucleolus; nucleus

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/P006108/1]

Ask authors/readers for more resources

Adhesive cues from the extracellular matrix (ECM) transmit mechanical forces through the cytoskeleton to specify the size and shape of the nucleus. This study finds that limited adhesion promotes nucleolar fusion, reduces nuclear volume, and condenses heterochromatin. Nucleolar remodeling impacts ribogenesis and protein synthesis, and is associated with specific transcriptional changes in ribogenesis genes.
Adhesive cues from the extracellular matrix (ECM) specify the size and shape of the nucleus via mechanical forces transmitted through the cytoskeleton. However, the effects of these biophysical stimuli on internal nuclear architecture and cellular responses remain poorly understood. This study investigates the direct impact of ECM adhesion on nucleolar remodeling in human keratinocytes using micropatterned substrates. Limited adhesion on small micropatterns promotes fusion of nucleoli, alongside a reduction in nuclear volume and condensation of heterochromatin. These changes in nucleolar architecture are mediated by altered chromatin biomechanics and depend on integration of the nucleus with the actin cytoskeleton. Functionally, nucleolar remodeling regulates ribogenesis and protein synthesis in keratinocytes and is associated with specific transcriptional changes in ribogenesis genes. Together, these findings demonstrate that cell shape and nuclear morphology control nucleolar structure and function and implicate the nucleolus as a key mechano-sensing element within the cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available