4.7 Article

Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors

Journal

NANOMATERIALS
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/nano11102736

Keywords

MnO2; graphene; buffer layer; supercapacitors

Funding

  1. Ministry of Science and Technology of Taiwan

Ask authors/readers for more resources

In the novel electrode fabrication method, graphene plays a crucial role as a buffer layer enhancing the conductivity of MnO2, leading to excellent electrochemical performance and long cycle life of the electrodes.
A novel MnO2/graphene/Ni foam electrode was fabricated via the impregnation and electrochemical deposition technique with Ni foams serving as substrates and graphene serving as a buffer layer for the enhanced conductivity of MnO2. The samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Compared with other methods, our strategy avoids using surfactants and high-temperature treatments. The electrodes exhibited excellent electrochemical performance, high capabilities, and a long cycle life. Various electrochemical properties were systematically studied using cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the specific capacitance of the MnO2/graphene/Ni composite prepared at 1 mA cm(-2) of electrodeposition could achieve a scan rate of 10 mV s(-1) at 292.8 F g(-1), which confirmed that the graphene layer could remarkably improve electron transfer at the electrolyte-electrode interface. The capacitance retention was about 90% after 5000 cycles. Additionally, a MnO2/graphene//graphene asymmetric supercapacitor was assembled and it exhibited a high-energy density of 91 Wh kg(-1) as well as had an excellent power density of 400 W kg(-1) at 1 A g(-1). It is speculated that the strong adhesion between the graphene and MnO2 can provide a compact structure to enhance the mechanical stability, which can be applied as a new method for energy storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available