4.3 Article

Prognostic significance of NADPH oxidase-4 as an indicator of reactive oxygen species stress in human retinoblastoma

Journal

INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY
Volume 21, Issue 4, Pages 651-657

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s10147-016-0951-7

Keywords

Immunohistochemistry; Retinoblastoma; NADPH oxidase; Histopathological high-risk factors

Categories

Funding

  1. CSIR-Senior Research Fellowship

Ask authors/readers for more resources

Reactive oxygen species (ROS) have been shown to enhance the proliferation of cancer cells. NADPH oxidases (NOX4) are a major intracellular source of ROS and are found to be associated with cancer and tumor cell invasion. Therefore, the purpose of this study is to evaluate the expression of NOX4 protein in human retinoblastoma. Immunohistochemical expression of NOX4 protein was analyzed in 109 specimens from prospective cases of retinoblastoma and then correlated with clinicopathological parameters and patient survival. Western blotting confirmed and validated the immunoreactivity of NOX4 protein. In our study we found a male preponderance (55.9 %), and 25/109 (22.9 %) were bilateral. Massive choroidal invasion was the histopathological high-risk factor (HRF) most frequently observed, in 42.2 % of the cases. NOX4 protein was expressed in 67.88 % (74/109) of primary retinoblastoma cases and was confirmed by Western blotting. NOX4 was statistically significant with massive choroidal invasion and pathological TNM staging. There was a statistically significant difference in overall survival in patients with NOX4 expression (p = 0.0461). This is the first study to show the expression of NOX4 protein in retinoblastoma tumors. Hence, a retinoblastoma tumor may exhibit greater ROS stress. This protein may prove to be useful as a future therapeutic target for improving the management of retinoblastoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available