4.6 Article

Diurnal asymmetry to the observed global warming

Journal

INTERNATIONAL JOURNAL OF CLIMATOLOGY
Volume 37, Issue 1, Pages 79-93

Publisher

WILEY
DOI: 10.1002/joc.4688

Keywords

climate change; surface air temperature; climate feedback; energy-budget model

Funding

  1. Norwegian Research Council [227137]
  2. Belmont Forum project

Ask authors/readers for more resources

The observed warming of the surface air temperature (SAT) over the last 50 years has not been homogenous. There are strong differences in the temperature changes both geographically and on different time frames. Here, we review the observed diurnal asymmetry in the global warming trend: the night-time temperatures have increased more rapidly than day-time temperatures. Several explanations for this asymmetric warming have been offered in the literature. These generally relate differences in the temperature trends to regionalized feedback effects, such as changes to cloud cover, precipitation or soil moisture. Here, we discuss a complementary mechanism through which the planetary boundary layer (PBL) modulates the SAT response to changes in the surface energy balance. This reciprocal relationship between boundary-layer depth and temperature response can explain a part of why the night-time has warmed more rapidly than the daytime. We used a multi-linear regression model to compare the effect of the PBL, cloud cover, precipitation and soil moisture on the SAT. From this, we demonstrate that it is the boundary-layer depth which is the strongest predictor of the strength of temperature trends in the boreal annual cycle, and in all seasons except the summer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available