4.5 Article

Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation

Journal

MINERALS
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/min11121432

Keywords

rare earth elements; magnetic separation; upgradation; Khalzan Buregtei deposit

Funding

  1. Japan Society for the Promotion of Science (JSPS) [JP20K15214]

Ask authors/readers for more resources

Global demand for rare earth elements is expected to increase, especially for renewable energy and clean storage technologies. This study successfully upgraded low-grade rare earth ore from the Khalzan Buregtei deposit in Mongolia using magnetic separation techniques.
The global demand for rare earth elements (REEs) is expected to increase significantly because of their importance in renewable energy and clean storage technologies, which are critical for drastic carbon dioxide emission reduction to achieve a carbon-neutral society. REE ore deposits around the world are scarce and those that have been identified but remain unexploited need to be developed to supply future demands. In this study, the Khalzan Buregtei deposit located in western Mongolia was studied with the aim of upgrading low-grade REE ore via magnetic separation techniques. The total REE content in this ore was ~6720 ppm (~3540 ppm light REE (LREE) + ~3180 ppm heavy REE (HREE)) with bastnaesite, pyrochlore, synchysite, and columbite-(Fe) identified as the main REE-bearing minerals. As the particle size fraction decreased from -4.0 + 2.0 mm to -0.5 + 0.1 mm, the recovery by dry high-intensity magnetic separation (DHIMS) increased from 20% to 70% of total rare earth oxide (TREO) while the enrichment ratio reached 2.8 from 1.3. Although effective, gangue minerals such as quartz and aluminosilicates were recovered (~22%) due most likely to insufficient liberation. Meanwhile, the wet high-intensity magnetic separation (WHIMS) could produce a magnetic concentrate with TREO recovery of ~80% and enrichment ratio of 5.5 under the following conditions: particle size fraction, -106 + 75 mu m; feed flow rate, 3.2 L/min; magnetic induction, 0.8 T. These results indicate that combining DHIMS and WHIMS to upgrade the low-grade REE ore from the Khalzan Buregtei deposit is an effective approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available