4.6 Article

Assembly of the Complete Mitochondrial Genome of Chinese Plum (Prunus salicina): Characterization of Genome Recombination and RNA Editing Sites

Journal

GENES
Volume 12, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/genes12121970

Keywords

plum; Prunus salicina; mitogenome; genome recombination; RNA editing

Ask authors/readers for more resources

This study successfully assembled the mitochondrial genome of Chinese plum, which is the largest reported in the Rosaceae family to date. The genome contains 37 protein-coding genes, 3 ribosomal RNA genes, and 16 transfer RNA genes, with the identification of repeat sequences and RNA editing sites.
Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available