4.6 Article

Activation of Astrocytes in the Persistence of Post-hypoxic Respiratory Augmentation

Journal

FRONTIERS IN PHYSIOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2021.757731

Keywords

astrocyte; hypoxia; post-hypoxic respiratory augmentation; plasticity; short-term potentiation; respiratory control; arundic acid; TRPA1

Categories

Funding

  1. JSPS KAKENHI [17K08559, 18K17783, 19K17386, 19K17620, 20K19368, 20K19474]
  2. Japanese Physical Therapy Association [JPTA2019, JPTA2020]
  3. Grants-in-Aid for Scientific Research [18K17783, 17K08559, 19K17386, 19K17620, 20K19474, 20K19368] Funding Source: KAKEN

Ask authors/readers for more resources

The study found that acute hypoxia results in a post-hypoxic persistent respiratory augmentation (PHRA) that is mediated by astrocytes. Further experiments indicate that the astrocytic TRPA1 channel is not directly involved in PHRA.
Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O-2, 93% N-2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1(-/-)) and floxed Trpa1 (Trpa1(f/f)) mice. In both Trpa1(f/f) and asTrpa1(-/-) mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available