4.6 Article

Serotonin and Dopamine Mimic Glucose-Induced Reinforcement in C. elegans: Potential Role of NSM Neurons and the Serotonin Subtype 4 Receptor

Journal

FRONTIERS IN PHYSIOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2021.783359

Keywords

glucose; serotonin; dopamine; reward; obesity; C; elegans

Categories

Funding

  1. American Diabetes Association Clinical Scientist Predoctoral Training Award
  2. Ruth L. Kirschstein National Research Service Award
  3. NIDDK

Ask authors/readers for more resources

Food can influence preference for specific odors through molecular mechanisms, with glucose and serotonin playing key roles in this effect. Dopamine and food withdrawal also impact this reward system in a similar way.
Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available