4.2 Article

MCMC inversion of the transient and steady-state creep flow law parameters of dunite under dry and wet conditions

Journal

EARTH PLANETS AND SPACE
Volume 73, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1186/s40623-021-01543-9

Keywords

Transient creep; Steady-state creep; Olivine rheology; DisGBS; Nonlinear Burgers model; Markov chain Monte Carlo (MCMC) method

Funding

  1. National Research Foundation Singapore under the NRF Fellowship scheme-National Research Fellow Award [NRF-NRFF2013-04]
  2. Singapore Ministry of Education under the Research Centres of Excellence initiative
  3. National Science Foundation of the United States [EAR-1848192]

Ask authors/readers for more resources

This study investigates the mechanical properties of natural dunites and constrains a constitutive framework that captures both transient and steady state creep. By determining the flow law parameters, including activation energy, stress exponent, and grain-size dependence, under dry and wet conditions, the study provides useful constraints for geodynamics applications. The lower activation energy of transient creep suggests a separate physical mechanism compared to steady-state creep, highlighting the need for more experimental data in this area.
The rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy 430 +/- 20 and 250 +/- 10 kJ/mol for dry and wet conditions, respectively, and the stress exponent 2.0 +/- 0.1for both the dry and wet cases for transient creep, consistently lower than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available