4.6 Article

Microwave Space-Time-Modulated Metasurfaces

Journal

ACS PHOTONICS
Volume 9, Issue 2, Pages 305-318

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.1c01041

Keywords

space-time modulation; nonreciprocity; wave transformation; electromagnetics; metasurfaces; frequency generation

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

This paper discusses the unique functionalities of microwave space-time-modulated metasurfaces, including spatiotemporal decomposition, digital coding, and nonreciprocal transmission, which far exceed the capabilities of traditional metasurfaces.
Over the past decade, static metasurfaces have proved to be low-profile and efficient apparatuses for transformation of electromagnetic waves. However, such metasurfaces are restricted by their reciprocal and time- and frequency-invariant responses. To overcome these restrictions, space-time-modulated metasurfaces have recently been introduced for versatile, reciprocal/nonreciprocal, and frequency translation of electromagnetic waves. These are capable of changing both the momentum and energy of the incident wave and provide functionalities that are far beyond the capabilities of conventional static and reciprocal metasurfaces. This Perspective provides a discussion on the unique functionalities of a microwave space-time-modulated metasurface. In particular, we review various techniques that have been recently used for the realization of metasurfaces introducing spatiotemporal decomposition, scattering and diffraction, digital coding, nonreciprocal transmission, serrodyne frequency translation, pure frequency conversion, parametric wave amplification, and multifunctional operations. Although the paper focuses on microwave space-time metasurfaces, the described concepts can inspire realization of their optical counterparts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available