4.6 Article

Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer

Journal

SUSTAINABILITY
Volume 13, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/su132112320

Keywords

Sb2Se3; CdS; ZnS; buffer layer; SCAPS 1D

Funding

  1. Council for Scientific and Industrial Research (CSIR), India

Ask authors/readers for more resources

The study focused on the impact of using ZnS as a buffer layer instead of CdS in Sb2Se3-based solar cells, showing that changing buffer materials and thicknesses significantly affects cell performance.
In an Sb2Se3-based solar cell, the buffer layer is sandwiched between the absorber and the window layer, playing an essential role in interfacial electricity. Generally, CdS is used as a buffer layer, but its toxic nature and low bandgap can cause current loss because of parasitic absorption. In this work, we optimized the buffer layer by using ZnS as an alternative to the CdS buffer layer in order to decrease the use of CdS. The effect of different buffer layers on the solar device was explored by numerical simulation with the help of SCAPS 1D software. The basic parameters, such as open-circuit voltage (Voc), current density (Jsc), fill factor (FF), and efficiency (eta) were analyzed and compared for both the buffer layers (CdS/ZnS). The results demonstrate that changing buffer materials and thicknesses has a significant impact on cell performance. The efficiency for the ZnS buffer layer was lower compared to that of the CdS-based solar cells because of insufficient energy band alignment. In order to enhance the efficiency of Sb2Se3-based solar cells, we used CdS/ZnS dual buffer layers and studied the device performance. The work function of the back contact also affects the device performance, and for work functions below 4.8 eV, the device's efficiency was very low. The effect of varying the thicknesses and temperatures of the buffer layers on the I-V/C-V characteristics, quantum efficiency, and energy band structure are also reported. This study shall guide the researcher in reducing CdS and improving the device's performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available