4.6 Article

Exploration of Hydrogeochemical Characterization and Assessment of Organic Pollution Characteristics of Shallow Groundwater near a Chemical Plant That Discharged Sewage Illegally

Journal

SUSTAINABILITY
Volume 14, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/su14020660

Keywords

groundwater; hydrogeochemistry; organic pollution; chemical plant; sustainable management

Ask authors/readers for more resources

Groundwater plays a significant role in domestic use and agricultural irrigation in rural areas of northern China. The pollution of groundwater is caused by the discharge of untreated wastewater from a chemical plant into a seepage well. This study investigates the characteristics and evolutionary mechanisms of groundwater organic pollution using statistical and hydrogeochemical methods.
Groundwater plays a significant role in domestic use and agricultural irrigation in rural areas of northern China. The untreated wastewater from the chemical plant was directly discharged into a seepage well, resulting in the pollution of groundwater. Assessing characteristics of groundwater organic pollution and identifying evolutionary mechanisms of hydrogeochemistry are beneficial for groundwater protection and sustainable management. Statistical methods (correlation analysis (CA) and principal component analysis (PCA)) combined with hydrogeochemical methods including Piper, Gibbs, Gaillardet, and ions binary diagrams and the chloride alkalinity index were employed to explore hydrogeochemical characteristics and evolutionary mechanisms. The results showed that cations were predominantly located at the Ca2+ end and anions were mostly close to the SO42- and Cl- end. The ion concentrations of groundwater were mainly affected by water-rock interactions. The weathering or dissolution of silicate (i.e., aluminosilicate minerals), evaporite (i.e., halite and gypsum), carbonate minerals (i.e., calcite and dolomite), cation exchange, and anthropogenic activities contribute to the chemical compositions of groundwater. Based on CA and PCA, the dissolution of halide minerals and the use of pesticides and fertilizers were the main factors controlling water chemistry. Additionally, the dissolution of sulfur-bearing minerals and gypsum was the key factor controlling the concentrations of Ca2+ and Mg2+. Application of mathematical statistical methods characterized that the exceedance rate of seven organic compounds with high detection rates were as follows: carbon tetrachloride (39.83%) > 1,1,2-trichloroethane (28.81%) > chloroform (10.17%) > trichloroethene (6.78%) > 1,1,2,2-tetrachloroethane (5.93%) > perchloroethylene (5.08%) > trichlorofluoromethane (0.85%). Simultaneously, pollution under the influence of volatilization and diffusion was significantly less than that in the direction of groundwater runoff.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available