4.6 Article

Modeling and Optimization of Biochar Injection into Blast Furnace to Mitigate the Fossil CO2 Emission

Journal

SUSTAINABILITY
Volume 14, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/su14042393

Keywords

blast furnace model; PCI; biochar; injection; CO2 emission; RAFT; top gas temperature

Ask authors/readers for more resources

In this study, the potential of biochar in replacing pulverized coal injection (PCI) in blast furnaces was evaluated using the MASMOD model. By optimizing the moisture content of biochar and the oxygen enrichment in the blast, it is possible to achieve 100% replacement of pulverized coal without affecting the adiabatic flame temperature and top gas temperature.
Most modern blast furnaces (BFs) operate with Pulverized Coal Injection (PCI), but renewable and carbon neutral biochar could be applied to reduce the fossil CO2 emission in the short term. In the present study, heat and mass balance-based model (MASMOD) is applied to evaluate the potential of biochar in partial and full replacement of injected pulverized coal (PC) in the ironmaking BF. The impact of biochar injection on the raceway adiabatic flame temperature (RAFT) and top gas temperature (TGT) is evaluated. Three grades of biochar, produced from the pyrolysis of sawdust, were evaluated in this study. The total carbon content was 79.2%, 93.4% and 89.2% in biochar 1, 2 and 3, respectively, while it was 81.6% in the reference PC. For each type of biochar, 6 cases were designed at different injection levels from 30 kg/tHM up to 143 kg/tHM, which represent 100% replacement of PC in the applied case, while the top charged coke is fixed in all cases as reference. The oxygen enrichment, RAFT, and TGT are fixed for certain cases, and have been calculated by MASMOD in other cases to identify the optimum level of biochar injection. The MASMOD calculation showed that as the injection rate of biochar 1 and biochar 2 increased, the RAFT increased by ~190 degrees C, while TGT decreased by ~45 degrees C at 100% replacement of PC with biochar. By optimizing the moisture content of biochar and the oxygen enrichment in the blast, it is possible to reach 100% replacement of PC without much affecting the RAFT and TGT. Biochar 3 was able to replace 100% of PC without deteriorating the RAFT or TGT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available