4.7 Article

Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12951-021-01148-0

Keywords

COVID-19; nanovesicles; Neutralizing antibody; Remdesivir; Targeted delivery

Funding

  1. National Natural Science Foundation of China [82072062]
  2. National Science and Technology Key Projects for Major Infectious Diseases [2017ZX10302301-002]
  3. Guangzhou Science and Technology Planning Project [201704020226, 201604020006]
  4. Three Major Scientific Research Projects of Sun Yatsen University [20200326236]
  5. Guangdong Scientific and Technological Research Project for COVID-19 containment

Ask authors/readers for more resources

The study demonstrates that nanovesicles derived from bispecific CAR-T cells can effectively target SARS-CoV-2, neutralize the virus, prevent viral resistance and antibody-dependent enhancement effects, and facilitate targeted delivery of antiviral drugs to infection sites, reducing adverse reactions.
Background: Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. Results: Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARSCoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. Conclusions: In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available