4.4 Article

Scalar-tensor theories within Asymptotic Safety

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 12, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP12(2021)001

Keywords

Models of Quantum Gravity; Renormalization Group

Funding

  1. CNPq [309781/2019-1]
  2. FAPERJ under the Jovem Cientista do Nosso Estado program [E26/202.800/2019]
  3. NWO under the VENI Grant [VI.Veni.192.109]
  4. China Scholarship Council (CSC)
  5. Becas Chile [ANID-PCHA/2020-72210073]

Ask authors/readers for more resources

In this work, the RG flow of gravity supplemented by a real scalar field is investigated using the Wetterich equation for the effective average action. The results demonstrate that the subspace of interactions respecting the global shift-symmetry of the scalar kinetic term is closed under RG transformations, leading to an interacting fixed point suitable for Asymptotic Safety with non-vanishing matter interactions.
Asymptotic Safety provides an elegant mechanism for obtaining a consistent high-energy completion of gravity and gravity-matter systems. Following the initial idea by Steven Weinberg, the construction builds on an interacting fixed point of the theories renormalization group (RG) flow. In this work we use the Wetterich equation for the effective average action to investigate the RG flow of gravity supplemented by a real scalar field. We give a non-perturbative proof that the subspace of interactions respecting the global shift-symmetry of the scalar kinetic term is closed under RG transformations. Subsequently, we compute the beta functions in an approximation comprising the Einstein-Hilbert action supplemented by the shift-symmetric quartic scalar self-interaction and the two lowest order shift-symmetric interactions coupling scalar-bilinears to the spacetime curvature. The computation utilizes the background field method with an arbitrary background, demonstrating that the results are manifestly background independent. Our beta functions exhibit an interacting fixed point suitable for Asymptotic Safety, where all matter interactions are non-vanishing. The presence of this fixed point is rooted in the interplay of the matter couplings which our work tracks for the first time. The relation of our findings with previous results in the literature is discussed in detail and we conclude with a brief outlook on potential phenomenological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available