4.6 Article

Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke

Journal

JOURNAL OF THE AMERICAN HEART ASSOCIATION
Volume 10, Issue 24, Pages -

Publisher

WILEY
DOI: 10.1161/JAHA.121.023486

Keywords

acute ischemic stroke; machine learning; natural language processing; outcome prediction; risk score

Funding

  1. Ditmanson Medical Foundation Chia--Yi Christian Hospital [R109-37-1]

Ask authors/readers for more resources

This study utilized natural language processing to analyze unstructured text in electronic health records for predicting functional outcomes after acute ischemic stroke. The results showed that this approach significantly outperformed traditional prognostic models in terms of predictive performance.
Background Conventional prognostic scores usually require predefined clinical variables to predict outcome. The advancement of natural language processing has made it feasible to derive meaning from unstructured data. We aimed to test whether using unstructured text in electronic health records can improve the prediction of functional outcome after acute ischemic stroke. Methods and Results Patients hospitalized for acute ischemic stroke were identified from 2 hospital stroke registries (3847 and 2668 patients, respectively). Prediction models developed using the first cohort were externally validated using the second cohort, and vice versa. Free text in the history of present illness and computed tomography reports was used to build machine learning models using natural language processing to predict poor functional outcome at 90 days poststroke. Four conventional prognostic models were used as baseline models. The area under the receiver operating characteristic curves of the model using history of present illness in the internal and external validation sets were 0.820 and 0.792, respectively, which were comparable to the National Institutes of Health Stroke Scale score (0.811 and 0.807). The model using computed tomography reports achieved area under the receiver operating characteristic curves of 0.758 and 0.658. Adding information from clinical text significantly improved the predictive performance of each baseline model in terms of area under the receiver operating characteristic curves, net reclassification improvement, and integrated discrimination improvement indices (all P<0.001). Swapping the study cohorts led to similar results. Conclusions By using natural language processing, unstructured text in electronic health records can provide an alternative tool for stroke prognostication, and even enhance the performance of existing prognostic scores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available