4.7 Article

Higher expression of XPF is a critical factor in intrinsic chemotherapy resistance of human renal cell carcinoma

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 139, Issue 12, Pages 2827-2837

Publisher

WILEY
DOI: 10.1002/ijc.30396

Keywords

renal cancer; chemoresistance; XPF

Categories

Funding

  1. National Natural Science Foundation of China [81172441]
  2. Clinical innovation grant from the Third Military Medical University [2012XLC02]

Ask authors/readers for more resources

Human renal cancer is extremely resistant to chemotherapy and radiation therapy. This clinical characteristic reduces the efficacy of chemotherapeutic agents in the treatment of recurrence or metastasis following surgical resection. Understanding the mechanism of chemotherapy resistance in renal cell carcinoma remains a significant challenge. In this study, we have shown that varied level of XPF expression was organ-tissue specific by comparing human renal cancer, bladder cancer, testicular cancer and their normal tissue counterparts, respectively. The expression of XPF was significantly higher in renal cancer than in bladder cancer and testicular cancer and correlated with the clinical characteristic of their chemotherapeutics sensitivity. These novel findings proposed that the intrinsic chemoresistance of human renal cell carcinomas might be derived from the high level of XPF expression. In a panel of five cancer cell lines, decreasing cisplatin sensitivity correlated with increasing levels of XPF expression. Knockdown of XPF expression not only increased sensitivity of renal carcinoma cells to cisplatin treatment by affecting the DNA damage response, including DNA repair, cell cycle regulation and apoptosis, but also increased senescence of renal cancer cell. Furthermore, experiment in vivo confirmed that silenced XPF significantly increased the sensitivity and survival following treatment with cisplatin in xenograft mice bearing renal cell tumor. These findings firstly uncover a partial mechanism of intrinsic chemoresistance in renal cancer and may provide a new approach to break through the obstacle of intrinsic chemoresistance by targeting the XPF protein with a potential new inhibitor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available