4.5 Article

Spatio-Temporal Characteristics of Air Quality Index (AQI) over Northwest China

Journal

ATMOSPHERE
Volume 13, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/atmos13030375

Keywords

northwest China; AQI; primary pollutant; CNEMC; Pearson correlation

Funding

  1. China National Environmental Monitoring Center
  2. National Natural Science Foundation of China [21667026]
  3. Social Science Foundation of Xinjiang Production and Construction Corps [18YB13]
  4. Startup Foundation for Introduction Talent of NUIST [2017r107]

Ask authors/readers for more resources

In recent years, air pollution in China has become a serious threat, causing adverse health effects and premature deaths. This study examines the spatial-temporal characteristics of air quality in five provinces of northwest China from 2015 to 2018. The results show that the levels of particulate matter (PM2.5 and PM10) exceeded the Chinese standards and increased over the years. The study also found variations in the types and levels of pollutants in different seasons and regions.
In recent years, air pollution has become a serious threat, causing adverse health effects and millions of premature deaths in China. This study examines the spatial-temporal characteristics of ambient air quality in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)) of northwest China (NWC) from January 2015 to December 2018. For this purpose, surface-level aerosol pollutants, including particulate matter (PMx, x = 2.5 and 10) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O-3)) were obtained from China National Environmental Monitoring Center (CNEMC). The results showed that fine particulate matter (PM2.5), coarse particulate matter (PM10), SO2, NO2, and CO decreased by 28.2%, 32.7%, 41.9%, 6.2%, and 27.3%, respectively, while O-3 increased by 3.96% in NWC during 2018 as compared with 2015. The particulate matter (PM2.5 and PM10) levels exceeded the Chinese Ambient Air Quality Standards (CAAQS) Grade II standards as well as the WHO recommended Air Quality Guidelines, while SO2 and NO2 complied with the CAAQS Grade II standards in NWC. In addition, the average air quality index (AQI), calculated from ground-based data, improved by 21.3%, the proportion of air quality Class I (0-50) improved by 114.1%, and the number of pollution days decreased by 61.8% in NWC. All the pollutants' (except ozone) AQI and PM2.5/PM10 ratios showed the highest pollution levels in winter and lowest in summer. AQI was strongly positively correlated with PM2.5, PM10, SO2, NO2, and CO, while negatively correlated with O-3. PM10 was the primary pollutant, followed by O-3, PM2.5, NO2, CO, and SO2, with different spatial and temporal variations. The proportion of days with PM2.5, PM10, SO2, and CO as the primary pollutants decreased but increased for NO2 and O-3. This study provides useful information and a valuable reference for future research on air quality in northwest China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available