4.6 Article

Co-laminar Microfluidic Microbial Fuel Cell Integrated with Electrophoretically Deposited Carbon Nanotube Flow-Over Electrode

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 10, Issue 5, Pages 1839-1846

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.1c07011

Keywords

membraneless; micromachined; single-walled carbon nanotubes; channel height effect; optimal biofilm formation; planar microbial fuel cell

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MIST) [2021R1A2C1006172, 2015R1A2A2A01006088]
  2. National Research Foundation of Korea [2015R1A2A2A01006088, 2021R1A2C1006172] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study reports the development of a co-laminar flow microbial fuel cell (MFC) with microfabricated single-walled carbon nanotube (SWCNT) electrodes using electrophoretic deposition. The study investigates the effects of flow channel height and shear stress on the performance of the MFC, showing that adjusting both parameters can improve power density but decrease fuel utilization. The developed MFC with its high power density has great potential for research and applications compared to traditional metal-based electrode MFCs.
This study reports the development of a co-laminar flow microbial fuel cell (MFC) with single-walled carbon nanotube (SWCNT) electrodes microfabricated by electrophoretic deposition. The effects of the flow channel height and the shear stress at the anode biofilm on the power density and the fuel utilization rate of the co-laminar flow MFC were investigated to improve the MFC's performance. The power density and the current density increase with increasing channel height, while the flow rate is kept constant. Meanwhile, when the flow rate was also adjusted according to the channel height to yield the optimum shear stress for biofilm formation, the performance improved further, but fuel utilization decreased. The maximum measured power density (143 +/- 1 mu W cm(-2)) of the developed MFC is better than those of microfabricated metal-based electrode MFCs. This micromachined, carbon-based, flow-over electrode improves the MFC's performance and enables mass production of MFCs integrated with planar microdevices based on the microelectromechanical system process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available