4.6 Article

Flow around a Rectangular Cylinder Placed in a Channel with a High Blockage Ratio under a Subcritical Reynolds Number

Journal

WATER
Volume 13, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/w13233388

Keywords

Particle Image Velocimetry; Proper Orthogonal Decomposition; rectangular cylinder; blockage effect; aspect ratio

Ask authors/readers for more resources

This study conducted experiments and analysis on the efficiency of the VIVACE device in low-velocity areas, investigating the factors affecting its performance and flow characteristics. By analyzing the impact of blockage ratio, Reynolds number, and aspect ratio on the flow field structure, new insights were provided for optimizing the VIVACE device.
With the depletion of fossil energy sources, clean energy has become a growing concern for scholars. Vortex-Induced Vibration Aquatic Clean Energy (VIVACE), a device that uses water flow energy to generate electricity, has attracted much attention for its broad applicability and other advantages. Particle Image Velocimetry (PIV) experiments were conducted to improve the efficiency of the VIVACE device in low-velocity areas. The present study investigated the effects of the Blockage ratio (Br), Reynolds number (Re = rho U0D/mu), and Aspect ratio (Ar = B/D, width-to-height) of rectangular cylinders on flow characteristics. The influence of the Ar, Br, and Re on the flow field structure was systematically analyzed in terms of the time-averaged flow field, Reynolds shear stress, space-time correlation, vorticity field, and water pressure characteristics. The vorticity field was deconstructed by Proper Orthogonal Decomposition (POD). The results show that the first two orders of POD modal energy accounted for 75% of the total energy, indicating that the first two modes can be used to identify the large-scale vortex structure. The main water pressure frequency and vortex shedding frequency (f) had a high degree of consistency. Thus, vortex shedding was the main cause of wall water pressure fluctuations. Given the blockage effect, the shear layer's development spanwise was restricted. Moreover, the blockage effect increased the local flow velocity and accelerated the vortex shedding. The dimensionless time-averaged flow velocity U/U-0 increased to 1.5, and the frequency of vortex shedding increased by approximately 25% when the Br increased from 0.067 to 0.25. The frequency increased by 25% when the Ar decreased from 0.5 to 0.2. The experimental results also provide a new idea for optimizing the VIVACE device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available