4.7 Article

Crotoxin Modulates Events Involved in Epithelial-Mesenchymal Transition in 3D Spheroid Model

Journal

TOXINS
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/toxins13110830

Keywords

crotoxin; epithelial-mesenchymal transition; spheroid model; tumor stroma

Funding

  1. Sao Paulo Research Foundation (FAPESP) [2017/111616]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [001]
  3. National Council for Scientific and Technological Development-CNPq-Productivity grant [301685/2017-7]

Ask authors/readers for more resources

EMT plays a crucial role in cell migration and differentiation, and tumor cells exploit this process to invade tissues. Studies have shown CTX's potential in inhibiting EMT markers and may be explored for novel drug design against metastatic cancer.
Epithelial-mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, alpha-SMA, and alpha v. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available