4.7 Article

Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 91, Issue -, Pages 1161-1169

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2016.06.081

Keywords

Lipase; Pencillium notatum; Cross-linked enzyme aggregates; Activity recovery; Thermo-stability; Reusability

Funding

  1. Higher Education Commission (HEC), Pakistan

Ask authors/readers for more resources

Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid Nhydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08 +/- 2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8 +/- 1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42 degrees C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available