4.7 Article

Removal and separation of Cu(II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2016.01.101

Keywords

Thin adsorptive membranes; Chitosan/polyacrylamide blend; Removal of copper

Funding

  1. Egyptian Ministry of Higher Education (EMHE)

Ask authors/readers for more resources

In the present study, adsorption of Cu(II) ions from aqueous solutions was evaluated using new thin adsorptive membranes modified with silver nanoparticles. Membranes were prepared from chitosan/polyacrylamide polymer blend. The variation of adsorption process was investigated in batch sorption mode. Infrared absorption spectra were applied for chemical characterization of the prepared polymer blend. Thermogravimetric analysis showed that addition of polyacrylamide to chitosan increased its thermal stability. The kinetics and thermodynamic parameters of Cu(II) ions adsorption onto the membranes were studied by removal experiments of Cu(II) ions from standard aqueous solutions. The kinetic data fitted to the traditional Lagergren adsorption kinetic equations. Thermodynamic studies indicated endothermic (Delta H degrees>0) and spontaneous (Delta G degrees<0) adsorption together with entropy generation (Delta S degrees>0) at the solid/liquid interface process. Regeneration experiments showed that the newly prepared membranes could be reconditioned without significant loss of its initial properties even after three adsorption-desorption cycles. The results suggest that the prepared composite membranes can be efficiently applied for the adsorptive removal of Cu(II) ions from natural water samples. Antimicrobial activity was tested against two gram negatives, two gram positives and Candida sp. microbes and they showed a remarkable bioactivity indicating the capability of applying such membranes for a dual action. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available