4.7 Article

Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters

Journal

REMOTE SENSING
Volume 14, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/rs14030661

Keywords

convolutional neural network; deep learning; crater detection; moon

Ask authors/readers for more resources

In this study, we propose a dual-path convolutional neural network model based on a U-NET structure to effectively integrate feature information by complementary different types of lunar maps. The experimental results confirm that the feature complementarity can improve the detection performance and speed. Our model exhibits high robustness and potential in practical applications.
Lunar crater detection plays an important role in lunar exploration, while machine learning (ML) exhibits promising advantages in the field. However, previous ML works almost all used a single type of lunar map, such as an elevation map (DEM) or orthographic projection map (WAC), to extract crater features; the two types of images have individual limitations on reflecting the crater features, which lead to insufficient feature information, in turn influencing the detection performance. To address this limitation, we, in this work, propose feature complementary of the two types of images and accordingly explore an advanced dual-path convolutional neural network (Dual-Path) based on a U-NET structure to effectively conduct feature integration. Dual-Path consists of a contracting path, bridging path, and expanding path. The contracting path separately extracts features from DEM and WAC images by means of two independent input branches, while the bridging layer integrates the two types of features by 1 x 1 convolution. Finally, the expanding path, coupled with the attention mechanism, further learns and optimizes the feature information. In addition, a special deep convolution block with a residual module is introduced to avoid network degradation and gradient disappearance. The ablation experiment and the comparison of four competitive models only using DEM features confirm that the feature complementary can effectively improve the detection performance and speed. Our model is further verified by different regions of the whole moon, exhibiting high robustness and potential in practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available