4.7 Article

Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance

Journal

POLYMERS
Volume 13, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/polym13193351

Keywords

alkyl alginate ester derivative; bimolecular nucleophilic substitution reaction; controlled release performance; cytocompatibility; hydrophobic pharmaceutical formulations

Funding

  1. Natural Science Foundation of Hainan Province [220MS035, 219QN209]
  2. Key Research and Development Project of Hainan Province [ZDYF2019018]
  3. Innovation and Scientific Research Projects for Graduates of College of Chemistry and Chemical Engineering, Hainan Normal University [Hgb202008]
  4. National Natural Science Foundation of China [51963009]

Ask authors/readers for more resources

In this study, alkyl alginate ester derivatives were synthesized and successfully used for sustained release of hydrophobic medicine, demonstrating potential for drug delivery systems.
To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (S(N)2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the S(N)2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48-0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3-180.5 nm and zeta potential at approximately -44.8 similar to-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available