4.7 Article

Cationic Lignin Polymers as Flocculant for Municipal Wastewater

Journal

POLYMERS
Volume 13, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/polym13223871

Keywords

lignin polymerization; flocculation; coagulation; municipal wastewater

Funding

  1. NSERC
  2. Canada Foundation for Innovation
  3. Canada Research Chairs programs

Ask authors/readers for more resources

The study aimed to produce lignin-based flocculants for simulated wastewater by attempting radical polymerization of METAC with acid-washed and unwashed softwood kraft lignin. Results showed that lignin-METAC polymers improved water solubility and cationic charge density, and exhibited significant removal effects on COD and TOC in wastewater treatment. The use of METAC-modified lignin as a flocculant led to enhanced organic content reduction in wastewater treatment processes.
The radical polymerization of acid-washed and unwashed softwood kraft lignin with [2-(methacryloyloxy) ethyl] trimethylammonium chloride (METAC) was attempted to investigate the production of lignin-based flocculants for simulated wastewater. The incorporation of METAC onto lignin resulted in a cationic charge density (2.3-3.3 meq/g), increased water solubility (89-96% in neutral pH), and increased molecular weight (70,000-210,000 g/mol) of lignin. The lignin-METAC polymers generated from acid-washed lignin had higher molecular weights than those generated from unwashed lignin. The lignin-METAC polymers showed lower resistance to thermal decomposition than unmodified lignin due to the inclusion of PolyMETAC. The unmodified acid-washed lignin samples did not significantly affect the COD of the wastewater, while the unmodified unwashed lignin samples contributed to the COD, implying that unmodified lignin was not suitable for wastewater treatment. The flocculation of wastewater with lignin-METAC led to the chemical oxygen demand (COD) reduction of 17-23% and total organic carbon (TOC) drop of 51-60%. The lignin-METAC polymer with the highest molecular weight (produced from acid-washed lignin) reached the highest COD removal, while lignin-METAC polymer with the highest charge density (produced from unwashed lignin) reached the highest TOC removal. Focused beam reflectance measurement (FBRM) studies revealed that the lignin-METAC polymer produced from acid-washed lignin with a high molecular weight generated larger and more flocs in wastewater than the lignin-METAC polymer produced from unwashed lignin. The comparison of theoretical and experimental dosages required for neutralizing the charges of wastewater demonstrated that charge neutralization was the main flocculation mechanism, although a bridging mechanism was also involved for component removals from wastewater. The use of 1 mg/L of alum along with 65 mg/L lignin-METAC in a dual coagulation-flocculation system led to higher average phosphorous (42%) and COD (44%) removals than the singular flocculation system only using 65 mg/L of lignin-METAC (with phosphorous removals of 3.4% and COD removals of 18.7%). However, lignin-METAC flocculant slightly increased the ammonia-nitrogen content in both singular flocculation and dual coagulation-flocculation systems due to the residual ammonia content of lignin-METAC. The coagulation-flocculation system determined that the use of lignin-METAC (65 mg/L) could reduce the alum dosage significantly while maintaining a similar organic content reduction of 44% for wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available