4.7 Article

Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering

Journal

POLYMERS
Volume 14, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/polym14010012

Keywords

biomimetic; tissue engineering; cryopolymerization; hyaluronic acid; folic acid; strontium; zinc

Ask authors/readers for more resources

Regenerative therapies based on tissue engineering have great potential for the treatment of osteoarthritis and rheumatoid arthritis. However, the regeneration of full-thickness articular osteochondral defects that replicate the complexity of native cartilage and osteochondral interface is still challenging. In this study, we present a biomimetic scaffold that mimics the spatial organization and composition of cartilage and osteochondral interface. The scaffold shows desirable physical and chemical characteristics, sustained release of bioactive compounds, and promotes guided cell colonization and proliferation. In vivo experiments demonstrate the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue and neoformation of osteochondral tissue.
Regenerative therapies based on tissue engineering are becoming the most promising alternative for the treatment of osteoarthritis and rheumatoid arthritis. However, regeneration of full-thickness articular osteochondral defects that reproduces the complexity of native cartilage and osteochondral interface still remains challenging. Hence, in this work, we present the fabrication, physic-chemical characterization, and in vitro and in vivo evaluation of biomimetic hierarchical scaffolds that mimic both the spatial organization and composition of cartilage and the osteochondral interface. The scaffold is composed of a composite porous support obtained by cryopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) in the presence of biodegradable poly(D,L-lactide-co-glycolide) (PLGA), bioactive tricalcium phosphate beta-TCP and the bone promoting strontium folate (SrFO), with a gradient biomimetic photo-polymerized methacrylated hyaluronic acid (HAMA) based hydrogel containing the bioactive zinc folic acid derivative (ZnFO). Microscopical analysis of hierarchical scaffolds showed an open interconnected porous open microstructure and the in vitro behaviour results indicated high swelling capacity with a sustained degradation rate. In vitro release studies during 3 weeks indicated the sustained leaching of bioactive compounds, i.e., Sr2+, Zn2+ and folic acid, within a biologically active range without negative effects on human osteoblast cells (hOBs) and human articular cartilage cells (hACs) cultures. In vitro co-cultures of hOBs and hACs revealed guided cell colonization and proliferation according to the matrix microstructure and composition. In vivo rabbit-condyle experiments in a critical-sized defect model showed the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue over the scaffold and neoformation of osteochondral tissue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available