4.7 Article

Mastoparan, a Peptide Toxin from Wasp Venom Conjugated Fluvastatin Nanocomplex for Suppression of Lung Cancer Cell Growth

Journal

POLYMERS
Volume 13, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/polym13234225

Keywords

mastoparan; cytotoxicity; fluvastatin; nanocomplex; lung cancer; peptide

Funding

  1. Science and Technology Unit-King Abdulaziz University-Kingdom of Saudi Arabia-Award [UE-41-108]

Ask authors/readers for more resources

The study developed a nanocomplex of FLV with MAS, called MAS-FLV-NC, which demonstrated enhanced cytotoxicity in vitro, inducing cell apoptosis, causing cell cycle arrest, and leading to loss of mitochondrial membrane potential.
Lung cancer has a very low survival rate, and non-small cell lung cancer comprises around 85% of all types of lung cancers. Fluvastatin (FLV) has demonstrated the apoptosis and suppression of tumor-cell proliferation against lung cancer cells in vitro. Drug-peptide nanoconjugates were found to enhance the cytotoxicity of anti-cancer drugs. Thus, the present study aimed to develop a nanocomplex of FLV with mastoparan (MAS), which is a peptide that has membranolytic anti-tumor activity. The nanocomplex of FLV and MAS (MAS-FLV-NC) was prepared and optimized for particle size using Box-Behnken design. The amount of FLV had the highest influence on particle size. While higher levels of FLV and incubation time favored higher particle size, a higher level of sonication time reduced the particle size of MAS-FLV-NC. The optimum formula of MAS-FLV-NC used 1.00 mg of FLV and was prepared with an incubation time of 12.1339 min and a sonication time of 6 min. The resultant particle size was 77.648 nm. The in vitro cell line studies of MAS-FLV-NC, FLV, and MAS were carried out in A549 cells. The IC50 values of MAS-FLV-NC, FLV, and MAS were 18.6 +/- 0.9, 58.4 +/- 2.8, and 34.3 +/- 1.6 mu g/mL respectively, showing the enhanced cytotoxicity of MAS-FLV-NC. The apoptotic activity showed that MAS-FLV-NC produced a higher percentage of cells in the late phase, showing a higher apoptotic activity than FLV and MAS. Furthermore, cell cycle arrest in S and Pre G1 phases by MAS-FLV-NC was observed in the cell cycle analysis by flow cytometry. The loss of mitochondrial membrane potential after MAS-FLV-NC treatment was significantly higher than those observed for FLV and MAS. The IL-1 beta, IL-6, and NF-kB expressions were inhibited, whereas TNF-alpha, caspase-3, and ROS expressions were enhanced by MAS-FLV-NC treatment. Furthermore, the expression levels of Bax, Bcl-2, and p53 strongly established the enhanced cytotoxic effect of MAS-FLV-NC. The results indicated that MAS-FLV-NC has better cytotoxicity than individual effects of MAS and FLV in A549 cells. Further pre-clinical and clinical studies are needed for developing MAS-FLV-NC to a clinically successful therapeutic approach against lung cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available