4.7 Article

Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing

Journal

POLYMERS
Volume 14, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/polym14030376

Keywords

bioactive polymers; thermosensitive hydrogel; biomaterials; wound repair and regeneration

Funding

  1. Higher Education Commission of Pakistan [5296/Federal/ NRPU/RD/HEC/2016, RSP-2021/301]
  2. King Saud University, Riyadh, Saudi Arabia

Ask authors/readers for more resources

This study developed and evaluated biopolymer-based thermoreversible injectable hydrogels for wound-healing applications and controlled drug delivery. The hydrogel exhibited self-healing properties, maintained a moist wound microenvironment, and had good antibacterial properties. In vivo studies showed accelerated wound healing with the drug-loaded hydrogel, demonstrating its potential for wound healing.
The in situ injectable hydrogel system offers a widespread range of biomedical applications in prompt chronic wound treatment and management, as it provides self-healing, maintains a moist wound microenvironment, and offers good antibacterial properties. This study aimed to develop and evaluate biopolymer-based thermoreversible injectable hydrogels for effective wound-healing applications and the controlled drug delivery of meropenem. The injectable hydrogel was developed using the solvent casting method and evaluated for structural changes using proton nuclear magnetic resonance, Fourier transforms infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the self-assembly of hyaluronic acid and kappa-carrageenan and the thermal stability of the fabricated injectable hydrogel with tunable gelation properties. The viscosity assessment indicated the in-situ gelling ability and injectability of the hydrogels at various temperatures. The fabricated hydrogel was loaded with meropenem, and the drug release from the hydrogel in phosphate buffer saline (PBS) with a pH of 7.4 was 96.12%, and the simulated wound fluid with a pH of 6.8 was observed to be at 94.73% at 24 h, which corresponds to the sustained delivery of meropenem. Antibacterial studies on P. aeruginosa, S. aureus, and E. coli with meropenem-laden hydrogel showed higher zones of inhibition. The in vivo studies in Sprague Dawley (SD) rats presented accelerated healing with the drug-loaded injectable hydrogel, while 90% wound closure with the unloaded injectable hydrogel, 70% in the positive control group (SC drug), and 60% in the negative control group was observed (normal saline) after fourteen days. In vivo wound closure analysis confirmed that the developed polymeric hydrogel has synergistic wound-healing potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available