4.7 Article

Innovative Banana Fiber Nonwoven Reinforced Polymer Composites: Pre- and Post-Treatment Effects on Physical and Mechanical Properties

Journal

POLYMERS
Volume 13, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/polym13213744

Keywords

banana; nonwoven; epoxy; polyester; eco-friendly composites; alkali treatment; water repellent treatment; gamma radiation

Ask authors/readers for more resources

Four types of nonwovens were prepared from different sections of the banana tree and reinforced with two different types of matrices to make eight variants of composites. Treatments including alkali and water repellent significantly influenced the properties of the composites, reducing water absorbency and enhancing tensile and flexural strength.
Four types of nonwovens were prepared from different sections of the banana tree e.g., outer bark (OB), middle bark (MB), inner bark (IB) and midrib of leaf (MR) by wet laid web formation. They were reinforced with two different types of matrices e.g., epoxy and polyester, to make eight variants of composites. Treatments including alkali on raw fibers, water repellent on nonwovens and gamma radiation on composites were applied in order to investigate their effects on properties of the composites such as water absorbency, tensile strength (TS), flexural strength (FS) and elongation at break (Eb%). Variations in the morphological structure and chemical composition of both raw banana fibers and fibers reinforced by the treatments were analyzed by Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). OB composites exhibited higher water absorbency, TS and FS and lower Eb% compared to other types of composites. Epoxy composites were found to have 16% lower water absorbency, 41.2% higher TS and 39.1% higher FS than polyester composites on an average. Water absorbency of the composites was reduced 32% by the alkali treatment and a further 63% by water repellent treatment. TS and FS of the composites were on average improved 71% and 87% by alkali treatment and a further 30% and 35% by gamma radiation respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available