4.6 Review

Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis

Journal

OPEN BIOLOGY
Volume 11, Issue 10, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsob.210033

Keywords

palmitoylation; EGFR; lung; cancer; signalling; DHHC20

Funding

  1. NIH [R01CA181633, T32-CA-557726-07, T32-CA-115299-14]
  2. ACS grant [RSG-15-027-01]
  3. Pennsylvania Department of Health

Ask authors/readers for more resources

EGFR plays a critical role in tumorigenesis, and the palmitoyltransferase DHHC20 can influence EGFR signaling, thereby regulating the proliferation of cancer cells and inhibiting tumorigenesis. Inhibiting the gene Zdhhc20 by CRISPR/Cas9 can effectively suppress the development of Kras-driven lung adenocarcinoma. Reducing EGFR palmitoylation increases the sensitivity of cancer cells to existing inhibitors.
The epidermal growth factor receptor (EGFR) is an essential driver of oncogenic signalling, and EGFR inhibitors are some of the earliest examples of successful targeted therapies in multiple types of cancer. The tractability of EGFR as a therapeutic target is overshadowed by the inevitable drug resistance that develops. Overcoming resistance mechanisms requires a deeper understanding of EGFR regulation in cancer cells. In this review, we discuss our recent discovery that the palmitoyltransferase DHHC20 palmitoylates EGFR on the C-terminal domain and plays a critical role in signal regulation during oncogenesis. Inhibiting DHHC20 expression or mutating the palmitoylation site on EGFR alters the EGF-induced signalling kinetics from a transient signal to a sustained signal. The change in signalling is accompanied by a decrease in cell proliferation in multiple human cancer cell lines. Our in vivo studies demonstrate that ablating the gene Zdhhc20 by CRISPR/Cas9-mediated inhibition in a mouse model of oncogenic Kras-driven lung adenocarcinoma potently inhibits tumorigenesis. The negative effect on tumorigenesis is mediated by EGFR since the expression of a palmitoylation-resistant mutant form of EGFR also inhibits Kras-driven lung adenocarcinoma. Finally, reducing EGFR palmitoylation increases the sensitivity of multiple cancer cell lines to existing inhibitors of EGFR and downstream signalling effector pathways. We will discuss the implications of these effects and strategies for targeting these new vulnerabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available