4.7 Article

Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers

Journal

NANO-MICRO LETTERS
Volume 14, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00750-z

Keywords

Electromagnetic dissipation; Carbon heterostructure; Environment adaptability; Bamboo; Lignocellulose

Funding

  1. Shanghai Jiao Tong University
  2. Ohio State University (OSU)
  3. OSU Sustainability Institute Seed Grant
  4. OSU Institute for Materials Research Kickstart Facility Grant
  5. National Natural Science Foundation of China [31971740]
  6. Science and technology project of Jiangsu Province [BE2018391]

Ask authors/readers for more resources

This study presents the design of carbon heterostructures derived from bamboo, which exhibit excellent electromagnetic absorption performance and environmental adaptability. The assembly of nanofibers and nanosheets acts as a nanometer-sized antenna, enhancing the conductive loss. The composition of cellulose and lignin in the precursor significantly affects the assembly shape, the formation of covalent bonds, and the surface hydrophobicity. The obtained carbon heterostructure maintains wideband electromagnetic absorption in real-world environments.
Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives, the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic (EM) radiation. Up to date, extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials. However, the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge. Here, we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo. Specifically, the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna, which results in an enhancement of the conductive loss. In addition, we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds, which affect the dielectric response-ability and the surface hydrophobicity (the apparent contact angle of water can reach 135 degrees). Finally, we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment, including exposure to rainwater with slightly acidic/alkaline pH values. Overall, the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available