4.7 Article

High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium-Sulfur Batteries

Related references

Note: Only part of the references are listed.
Review Chemistry, Physical

Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed

Lei Zhou et al.

Summary: Lithium-sulfur batteries are seen as a viable alternative to future energy storage devices due to their high theoretical energy density. However, the main challenge lies in the leakage and migration of sulfur species. Recent research has focused on developing sulfur host materials that can effectively anchor polysulfides for improved battery performance.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium-Sulfur Batteries

Da Tian et al.

Summary: CNT@MoS2-B nanosheets, with B-doping, serve as catalysts to enhance Li-S batteries' performance by improving the reactivity of the MoS2 basal plane for Li2S formation and dissolution kinetics. The incorporation of B significantly increases the reactivity of MoS2 basal plane, leading to high rate capability and outstanding cycling stability of S/CNT@MoS2-B cathodes, offering fresh insights for developing effective catalysts to accelerate LiPS conversion.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process

Xin Wang et al.

Summary: Tensile-strained Mxene/CNT porous microspheres were developed as an electrocatalyst for the lithium polysulfide redox reaction, with internal stress, macroporous framework, and CNT interwoven enhancing their electrochemical performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries

Bin Guan et al.

Summary: The Co2B@MXene heterostructure shows enhanced performance as an interlayer material for lithium-sulfur batteries, achieving high initial capacity and low capacity decay rate. The interfacial electronic interaction facilitates electron transfer, enhancing catalytic ability and redox kinetics.

CHINESE CHEMICAL LETTERS (2021)

Article Nanoscience & Nanotechnology

A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites

Chen Zhao et al.

Summary: A novel cathode design for Li-S batteries utilizing single-atom Co catalyst and ZnS nanoparticles has successfully suppressed the shuttling effect, resulting in stable cycling and high energy performances.

NATURE NANOTECHNOLOGY (2021)

Article Multidisciplinary Sciences

Surface lattice engineering for fine-tuned spatial configuration of nanocrystals

Bo Jiang et al.

Summary: Surface lattice engineering can be used to break the bottleneck of controlling the spatial configuration of hybrid nanocrystals, enabling precise control of geometrical symmetry, spatial composition, and dimension of metal heterostructured nanocrystals.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries

Xueqin Song et al.

Summary: An alloying strategy is proposed to enhance the adsorption of sulfur on transition metal catalysts, addressing the issue of sulfur poisoning. The Co-Te alloy catalyst shows excellent catalytic performance, improving the rate capability of sulfur redox reactions and suppressing the shuttle effect.

ENERGY STORAGE MATERIALS (2021)

Review Chemistry, Physical

Defect Engineering for Expediting Li-S Chemistry: Strategies, Mechanisms, and Perspectives

Zixiong Shi et al.

Summary: Lithium-sulfur (Li-S) batteries have attracted growing scientific and industrial interest due to their high energy density and low materials costs, with recent research focusing on improving the reaction kinetics of sulfur species through defect engineering. While defect engineering has emerged as a key strategy to enhance polysulfide modulation, there is still a lack of comprehensive overview in this field.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts

Yangdi Niu et al.

Summary: The competitive coordination strategy allows for the control of the morphology and structure of MOFs derivatives, paving an innovative and feasible pathway for tailored catalytic centers towards electrochemical energy storage and conversion.

NANO ENERGY (2021)

Article Chemistry, Multidisciplinary

Sandwiched Cathodes Assembled from CoS2-Modified Carbon Clothes for High-Performance Lithium-Sulfur Batteries

Jun Xu et al.

Summary: The design of advanced cathodes utilizing CC-CoS2 has shown high rate capability and excellent capacity retention in lithium-sulfur batteries. The sandwiched structure with active catalytic component contributes to the outstanding electrochemical performance, enabling high reversible capacities even at high sulfur loadings.

ADVANCED SCIENCE (2021)

Article Chemistry, Multidisciplinary

Conductive FeOOH as Multifunctional Interlayer for Superior Lithium-Sulfur Batteries

Benben Wei et al.

SMALL (2020)

Article Chemistry, Physical

A fundamental look at electrocatalytic sulfur reduction reaction

Lele Peng et al.

NATURE CATALYSIS (2020)

Article Materials Science, Multidisciplinary

A compact inorganic layer for robust anode protection in lithium-sulfur batteries

Yu-Xing Yao et al.

INFOMAT (2020)

Review Materials Science, Multidisciplinary

Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries

Zhaohuan Wei et al.

INFOMAT (2020)

Article Chemistry, Multidisciplinary

Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries

Zhenzhen Du et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Physical

MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Li-S Batteries

Da Tian et al.

ADVANCED ENERGY MATERIALS (2019)

Article Engineering, Environmental

Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries

Yu You et al.

CHEMICAL ENGINEERING JOURNAL (2019)

Article Chemistry, Physical

Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis

Xiaopeng Han et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries

Yiren Zhong et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

News Item Multidisciplinary Sciences

ELECTROCHEMISTRY Lithium-sulfur batteries poised for leap

Robert F. Service

SCIENCE (2018)

Review Energy & Fuels

Batteries and fuel cells for emerging electric vehicle markets

Zachary P. Cano et al.

NATURE ENERGY (2018)

Article Chemistry, Multidisciplinary

Identification of Facet-Governing Reactivity in Hematite for Oxygen Evolution

Hao Wu et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

The Radical Pathway Based on a Lithium-Metal-Compatible High-Dielectric Electrolyte for Lithium-Sulfur Batteries

Ge Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries

Chao Ye et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Physical

Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery

Jungjin Park et al.

ADVANCED ENERGY MATERIALS (2017)

Review Chemistry, Multidisciplinary

Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries

Xue Liu et al.

ADVANCED MATERIALS (2017)

Review Chemistry, Multidisciplinary

Designing high-energy lithium-sulfur batteries

Zhi Wei Seh et al.

CHEMICAL SOCIETY REVIEWS (2016)

Article Chemistry, Multidisciplinary

Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction

Hua Bing Tao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Multidisciplinary Sciences

A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries

Zhen Li et al.

NATURE COMMUNICATIONS (2016)

Article Chemistry, Multidisciplinary

High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting

Liang-Liang Feng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Multidisciplinary Sciences

A highly efficient polysulfide mediator for lithium-sulfur batteries

Xiao Liang et al.

NATURE COMMUNICATIONS (2015)

Article Nanoscience & Nanotechnology

Supersaturation-Controlled Shape Evolution of α-Fe2O3 Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties

Junjie Ouyang et al.

ACS APPLIED MATERIALS & INTERFACES (2014)

Article Chemistry, Multidisciplinary

Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets

Gao Feng et al.

SCIENCE CHINA-CHEMISTRY (2014)

Article Multidisciplinary Sciences

fSulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries

Zhi Wei Seh et al.

NATURE COMMUNICATIONS (2013)

Review Chemistry, Physical

Li-O2 and Li-S batteries with high energy storage

Peter G. Bruce et al.

NATURE MATERIALS (2012)

Article Chemistry, Multidisciplinary

Low-Symmetry Iron Oxide Nanocrystals Bound by High-Index Facets

Jingzhou Yin et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2010)

Article Chemistry, Multidisciplinary

Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy {221} Facets and Enhanced Gas-Sensing Properties

Xiguang Han et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2009)

Article Chemistry, Multidisciplinary

Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings

Chun-Jiang Jia et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2008)