4.2 Article

Investigations on Brain Tumor Classification Using Hybrid Machine Learning Algorithms

Journal

JOURNAL OF HEALTHCARE ENGINEERING
Volume 2022, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2022/2761847

Keywords

-

Ask authors/readers for more resources

This study analyzes brain tumor localization using hyperspectral imaging and proposes a method based on clustering processes and neural network labeling. The proposed technique outperforms existing methods in terms of accuracy, sensitivity, and specificity.
The imaging modalities are used to view other organs and analyze different tissues in the body. In such imaging modalities, a new and developing imaging technique is hyperspectral imaging. This multicolour representation of tissues helps us to better understand the issues compared to the previous image models. This research aims to analyze the tumor localization in the brain by performing different operations on hyperspectral images. The tumor is located using the combination of k-based clustering processes like k-nearest neighbour and k-means clustering. The value of k in both methods is determined using the optimization process called the firefly algorithm. The optimization processes reduce the manual calculation for finding K's optimal value to segment the brain regions. The labelling of the areas of the brain is done using the multilayer feedforward neural network. The proposed technique produced better results than the existing methods like hybrid k-means clustering and parallel k-means clustering by having a higher peak signal-to-noise ratio and a lesser mean absolute error value. The proposed model achieved 96.47% accuracy, 96.32% sensitivity, and 98.24% specificity, which are improved compared to other techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available