4.5 Article

The effect of short-term intensive insulin therapy on inflammatory cytokines in patients with newly diagnosed type 2 diabetes

Journal

JOURNAL OF DIABETES
Volume 14, Issue 3, Pages 192-204

Publisher

WILEY
DOI: 10.1111/1753-0407.13250

Keywords

antibody array; inflammatory cytokines; short-term intensive insulin therapy; type 2 diabetes

Funding

  1. National Key RandD Program of China [2018YFC1314100]
  2. Key-Area Research and Development Program of Guangdong Province [2019B020230001]

Ask authors/readers for more resources

After short-term intensive insulin therapy using continuous subcutaneous insulin infusion, newly diagnosed type 2 diabetic patients showed decreased levels of inflammatory cytokines, especially in those with higher baseline glycated hemoglobin levels.
Background Diabetes mellitus was a chronic low-grade inflammatory disease and had increased circulating inflammatory cytokines and acute phase proteins. We aimed to identify the changes of inflammatory cytokines in newly diagnosed type 2 diabetic patients after short-term intensive insulin therapy using continuous subcutaneous insulin infusion (CSII). Methods Thirty-three newly diagnosed type 2 diabetic patients were enrolled between September 2020 to December 2020. Expression of 40 inflammatory cytokines of the patients were tested with RayBiotech antibody array before and after 1 week of intensive insulin therapy of CSII. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out to explore the signaling pathway involved in the therapy. Results Five inflammatory cytokines were downregulated significantly after 1 week of CSII therapy. They were interleukin-6 receptor (IL-6R), regulated upon activation normal T-cell expressed and secreted (RANTES), intercellular adhesion molecule-1 (ICAM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1), and platelet-derived growth factor type BB (PDGF-BB) (p < 0.05 and foldchange <0.83). Among patients with baseline glycated hemoglobin (HbA1c) < 10%, three proinflammatory cytokines were decreased significantly after therapy: IL-6R, RANTES, and ICAM-1. As for the patients with baseline HbA1c >= 10%, eight inflammatory cytokines were inhibited significantly after the treatment, including ICAM-1, IL-6R, RANTES, TIMP-1, TIMP-2, macrophage inflammatory protein-1 beta (MIP-1 beta), PDGF-BB, and tumor necrosis factor receptor type II (TNF RII). No matter which subgroup of baseline HbA1c level was considered, the decreased cytokines after CSII therapy were significantly involved in TNF signaling pathway. Nuclear factor-kappa B (NF-kappa B) signaling pathway was mainly enriched in patients with baseline HbA1c >= 10%. Conclusions A panel of 40 inflammatory cytokines, measured by protein microarray, were evaluated for 1 week of CSII treatment in newly diagnosed type 2 diabetic patients. After treatment, many proinflammatory cytokines decreased. In the higher baseline HbA1c subgroup, more proinflammatory cytokines improved. No matter which subgroup of HbA1c level was considered, IL-6R, RANTES, and ICAM-1, which were involved in TNF signaling pathway, decreased significantly after CSII therapy. This was the first report showing that the cytokines of IL-6R, TIMP-2, PDGF-BB, and TNF RII decreased after the CSII therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available